• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/045/0022

    • Keywords

       

      Worm gear; fault detection; pitting; vibration; image processing; artificial neural network.

    • Abstract

       

      Mechanical power transmission systems are an indispensable part of the industrial process. The most complex equipment of these processes is the gear systems. Among the gear systems the worm gearboxes are used in various applications, especially those that need high transmission ratios in one reduction stage.However, worm wheel manifests defects easily because it is made of soft material, in comparison with the worm. The stress on each tooth surface may increase because of overload, shock load, cyclic load change, gear misalignment, etc. This often causes pitting faults in worm gearboxes. This paper focuses on the detection of localized pitting damages in a worm gearbox by a vibration visualization method and artificial neural networks (ANNs). For this purpose, the vibration signals are converted into an image to display and detect pitting defects on the worm wheel tooth surface. In addition, statistical parameters of vibration signals in the time andfrequency domains are used as an input to ANN for multi-class recognition. Later, the results obtained from ANN are compared for both axial and radial vibration. It is found that the ANN can classify with high accuracy for any sample of the vibration data obtained from the radial direction according to fault severity levels.

    • Author Affiliations

       

      RAFET CAN ÜMÜTLÜ1 BERKAN HIZARCI1 HASAN OZTURK2 ZEKI KIRAL2

      1. Department of Mechatronics Engineering, The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Tinaztepe, Buca, Izmir, Turkey
      2. Department of Mechanical Engineering, Dokuz Eylul University, Tinaztepe, Buca, Izmir, Turkey
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.