• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/044/07/0160

    • Keywords

       

      Pyrotechnic; MTV; density; Taguchi; ANOVA; regression.

    • Abstract

       

      Magnesium/Teflon/Viton or MTV pyrotechnic composition has been widely preferred to prepare decoy flares as countermeasures against heat seeking Infra-red (IR) missiles. Though MTV for military applications are available in the global market, the manufacturing process and performance characteristics of these flares have not been explicitly defined. The pellets which are an essential sub-assembly of the flares need to be extensively studied to develop these flares for military applications. The study paper attempts to optimise the density of compacted 50 mm diameter cylindrical pellets. The pyrotechnic composition is initially subjected to various sensitivity tests namely impact, friction and spark to assess the threshold values of initiation of this composition. Three levels of process parameters for pelleting have been considered and L27 array has been selected to represent the process parameters namely charge mass (A), applied load (B), dwell time (C) and their interactions. The Taguchi robust experiment method arrived at the optimal result as A1B3C3 (100 g of charge mass, 8 tons of applied load and 20 s of dwell time). Analysis of Variance (ANOVA) highlighted that parameters A and B significantly influenced the density of the pellets. Finally, general regression equation was derived with R2 value of 0.94.

    • Author Affiliations

       

      SUKAMAL ADHIKARY1 HIMANSHU SEKHAR2 DINESH G THAKUR1

      1. Defence Institute of Advanced Technology, Pune 411025, India
      2. High Energy Materials Research Laboratory, Pune 411021, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.