• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/042/03/0433-0445

    • Keywords

       

      Drag reduction; turbulent flows; shear-free surfaces; effect on large-flow scales

    • Abstract

       

      In this paper, a novel technique for drag reduction in turbulent flows is presented. The technique involves the modification of the large scales of turbulent flows and is a passive approach. The lateral transport of momentum, which is a dominant mechanism in turbulence, is attenuated by the introduction of moving shearfree surfaces (SFSes). This brings about a reduction in the drag. 2D simulations have been carried out for aturbulent channel flow using shear stress transport (SST) Reynolds-averaged Navier–Stokes (RANS) model and validated with the available experimental results. The interaction between the plates and the fluid is two way,and is enforced either by the use of a rigid body solver with moving mesh, or by considering the SFSes to befixed at particular locations and then updating the velocities of the plates at those locations. The latter is equivalent to solving a fully developed flow in the moving mesh case. The number, shape, size and placement of the SFSes strongly influence the amount of drag reduction. The phenomenon is confirmed to be governed by a

      ‘slow’ turbulent time scale. Further, the efficacy of the method is seen to depend on the ratio of two time scales – an advection time scale indicating the ‘resident time’ near an SFS, and the turbulent time scale. In addition, the effectiveness of the approach is improved by judicious placement of multiple SFSes in the flow.

    • Author Affiliations

       

      AJAY KUMAR SOOD1 MURALI R CHOLEMARI1 BALAJI SRINIVASAN1 2

      1. Department of Applied Mechanics, Indian Institute of Technology, New Delhi 110016, India
      2. Department of Mechanical Engineering, Indian Institute of Technology, Chennai 600036, India
    • Dates

       

© 2017-2019 Indian Academy of Sciences, Bengaluru.