• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/sadh/037/04/0521-0537

    • Keywords

       

      Power system stabilizer; linear quadratic regulator; small-signal stability; transient stability.

    • Abstract

       

      Linear quadratic stabilizers are well-known for their superior control capabilities when compared to the conventional lead–lag power system stabilizers. However, they have not seen much of practical importance as the state variables are generally not measurable; especially the generator rotor angle measurement is not available in most of the power plants. Full state feedback controllers require feedback of other machine states in a multi-machine power system and necessitate block diagonal structure constraints for decentralized implementation. This paper investigates the design of Linear Quadratic Power System Stabilizers using a recently proposed modified Heffron–Phillip’s model. This model is derived by taking the secondary bus voltage of the step-up transformer as reference instead of the infinite bus. The state variables of this model can be obtained by local measurements. This model allows a coordinated linear quadratic control design in multi machine systems. The performance of the proposed controller has been evaluated on two widely used multimachine power systems, 4 generator 10 bus and 10 generator 39 bus systems. It has been observed that the performance of the proposed controller is superior to that of the conventional Power System Stabilizers (PSS) over a wide range of operating and system conditions.

    • Author Affiliations

       

      A Venkateswara Reddy1 M Vijay Kumar2 Indraneel Sen3 Gurunath Gurrala3

      1. Department of Electrical Engineering, Chaitanya Bharathi Institute of Technology (CBIT), Proddatur 516 213, India
      2. Jawaharlal Nehru Technological University (JNTU), Anantapur 515 002, India
      3. Department of Electrical Engineering, Indian Institute of Science, Bangalore 560 012, India
    • Dates

       
  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.