• Monte Carlo filters for identification of nonlinear structural dynamical systems

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Nonlinear structural system identification; particle filters; stocha-stic differential equations

    • Abstract


      The problem of identification of parameters of nonlinear structures using dynamic state estimation techniques is considered. The process equations are derived based on principles of mechanics and are augmented by mathematical models that relate a set of noisy observations to state variables of the system. The set of structural parameters to be identified is declared as an additional set of state variables. Both the process equation and the measurement equations are taken to be nonlinear in the state variables and contaminated by additive and (or) multiplicative Gaussian white noise processes. The problem of determining the posterior probability density function of the state variables conditioned on all available information is considered. The utility of three recursive Monte Carlo simulation-based filters, namely, a probability density function-based Monte Carlo filter, a Bayesian bootstrap filter and a filter based on sequential importance sampling, to solve this problem is explored. The state equations are discretized using certain variations of stochastic Taylor expansions enabling the incorporation of a class of non-smooth functions within the process equations. Illustrative examples on identification of the nonlinear stiffness parameter of a Duffing oscillator and the friction parameter in a Coulomb oscillator are presented.

    • Author Affiliations


      C S Manohar1 D Roy1

      1. Department of Civil Engineering, Indian Institute of Science, Bangalore - 560 012, India
    • Dates

  • Sadhana | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.