• Some new families of exact solitary wave solutions of the Klein–Gordon–Zakharov equations in plasma physics

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Solitary wave solutions; Klein–Gordon–Zakharov equations; generalised exponential rational function method; closed-form solutions.

    • Abstract


      The prime objective of this paper is to obtain some new families of exact solitary wave solutions of the Klein–Gordon–Zakharov (KGZ) equations via computerised symbolic computation on Wolfram Mathematica. By applying the generalised exponential rational function method, numerous exact soliton solutions are constructed for the KGZ equations, which provide a model of the interaction between the Langmuir wave and the ion-acoustic wave in high-frequency plasma. Consequently, the exact solitary wave solutions are obtained in different forms of dynamical wave structures of solitons including multisolitons, lump-type solitons, travelling waves, kink waves, also trigonometric and hyperbolic function solutions, and rational function solutions. Moreover, the dynamical behaviour of the resulting multiple soliton solutions is discussed both analytically and graphically by using suitable values of free parameters through numerical simulation. The reported results have rich physical structures that are helpful to explain the nonlinear wave phenomena in plasma physics and soliton theory.

    • Author Affiliations



      1. Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi110 007, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.