Unsteady MHD Casson fluid flow with heat transfer passed over a porous rigid plate with stagnation point flow: Two-parameter Lie scaling approach
MUSHARAFA SALEEM MUHAMMAD NAZIM TUFAIL QASIM ALI CHAUDHRY
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/095/0028
This study examined the steady flow of Casson fluid over a rigid porous plate in an infinite region with magnetohydrodynamic (MHD), thermal radiation and heat source-sink effects. Under the influence of stagnation point flow and thermal transport, the physical model is strengthened. The model consists of nonlinear partial differential equations (PDEs), which are controlled after applying approximation of the boundary layer (BL). The significance of this flow model here is that these PDEs have been turned into ordinary differential equations (ODEs) by means of two-parameter Lie scaling transformations. These ODEs are rectified using the MATLAB bvp4c technique. Convergence analysis of these ODEs demonstrate the consistency of the model. Dimensionless parameters are: Casson fluid parameter $\beta$, Hartmann number $M_t$ , Darcy ratio $K$, thermal radiation $\Delta_t$ and heat source-sink parameter $Q_t$. These parameters are analysed using graphs for fluid flow, temperature and physical quantities. These quantities are analysed using graphs and a table. All the prominent parameters increased the flow of fluid, but thermal transport was decreased for different parameters.
MUSHARAFA SALEEM1 MUHAMMAD NAZIM TUFAIL1 QASIM ALI CHAUDHRY2 3
Volume 96, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.