• Two bursting patterns induced by system solutions approaching infinity in a modified Rayleigh–Duffing oscillator

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Bursting oscillation; system solutions approaching infinity; modified Rayleigh–Duffing oscillator; slow–fast analysis; two time-scales.

    • Abstract


      In this paper, the mechanism of system solutions approaching infinity is explored based on a modified Rayleigh–Duffing oscillator with two slow-varying periodic excitations. System solutions approaching infinity is a new novel route to bursting oscillation, and are not reported yet. The system can be separated into a fast subsystem and a slow subsystem according to the slow–fast analysis method. We find that there is a critical value for the fast subsystem, which limits the original region of the stable equilibrium point and the stable limit cycle, the right of which is the divergent region. When the control parameter slowly varies closely to the critical value $\delta_{\mathrm{CR}}$, both the stable equilibrium point and the stable limit cycle quickly leave the original region and approach positive infinity. The mechanism of two different bursting forms called bursting oscillation of point/point and bursting oscillation of cycle/cycle induced by system solutions approaching infinity are explored. This paper provides a new possible route to bursting oscillation unrelated to bifurcations and deepens the comprehension of bursting dynamics behaviours. Lastly, the accuracy of our study is verified by overlapping the transformed phase portraits onto the bifurcation diagrams.

    • Author Affiliations

    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.