• Effect of magnetic field on the mixed convection Fe$_{3}$O$_{4}$/water ferrofluid flow in a horizontal porous channel

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/094/0156

    • Keywords

       

      Mixed convection; porous medium; ferrofluid; magnetic field.

    • Abstract

       

      The effect of an external magnetic field on the mixed convection Fe$_{3}$O$_{4}$/water ferrofluid flow in a horizontal porous channel was studied numerically. The governing equations using the Darcy–Brinkman–Forchheimer formulation were solved by employing the finite volume method. The computations were carried out for a range of volume fractions of nanoparticles 0 ≤ $\varphi$ ≤ 0.05, magnetic numbers 0 ≤ Mn ≤ 100, Reynolds numbers 100 ≤ Re ≤ 500, Darcy numbers 10$^{−3}$ ≤ Da ≤ 10$^{−1}$ and porosity parameters 0.7 ≤ $\epsilon$ ≤ 0.9 while fixing the Grashof number at 10$^{4}$. Results show the formation of recirculation zone in the vicinity of the magnetic source under the influence of Kelvin force. It grows as the magnetic number increases. The friction factor increases by increasing the magnetic number and diminishes with the increase in Darcy number. The flow accelerates as the magnetic field intensifies. The heat transfer rate increases by increasing the volume fraction of the nanoparticles and the magnetic number. The effect of magnetic field on the hydrodynamic and thermal behaviours of the ferrofluid flow considerably intensifies by increasing Reynolds number and Darcy number. The combined effect of ferromagnetic nanoparticles and magnetic field on the enhancement rate of heat transfer becomes more pronounced at high values of Reynolds number, permeability and/or porosity parameter.

    • Author Affiliations

       

      AMIRA JARRAY1 ZOUHAIER MEHREZ1 AFIF EL CAFSI1

      1. Laboratoire d’Energétique et des Transferts Thermique et Massique (LETTM), Département de Physique, Faculté des Sciences de Tunis, Université d’el Manar, Tunis, Tunisia
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.