• Improvement of transconductance and cut-off frequency in $\rm{In_{0.1}Ga_{0.9}N}$ back-barrier-based double-channel $\rm{Al_{0.3}Ga_{0.7}N/GaN}$ high electron mobility transistor by enhancing the drain source contact length ratio

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/094/0005

    • Keywords

       

      High electron mobility transistor; back-barrier; two-dimensional electron gas; heterostructures

    • Abstract

       

      An aluminium gallium nitride/gallium nitride ($\rm{Al_{0.3}Ga_{0.7}N/GaN}$) high electron mobility transistor (HEMT) is designed at a gate length ($L_{G}$) of 0.1 $\mu$m, drain-to-source spacing ($L_{SD}$) of 3 $\mu$m and drain length to source length ratio ($L_{D}:L_{S}$) of 1. The HEMT is investigated by considering four different heterostructures, namely single channel, single channel with back-barrier, double channel and double channel with back-barrier. A two-dimensional electron gas (2DEG) is formed at the interface of AlGaN/GaN HEMT (DC HEMT). The physical importance of indium gallium nitride (InGaN) as back-barrier is to increase carrier confinement by raising the conduction band of GaN buffer. The double-channel HEMT (DC HEMT) with back-barrier shows the highest current drive. There is an improvement of 3.16% in drain current and an improvement of 4.58% in cut-off frequency at a gate-to-source voltage of −0.5 V for the DC HEMT with back-barrier compared to the DC HEMT without back-barrier. For further improvement in transconductance and cut-off frequency, the structure of DC HEMT with back-barrier is modified by increasing the drain contact length and decreasing the source contact length, that is $L_{D}:L_{S} = 3$, keeping the drain-to-source spacing unchanged, i.e. $L_{SD} = 3 \mu m$. There is 32.55% improvement in transconductance and 14.03% improvement in cut-off frequency at a gate-to-source voltage of −0.5 V for the DC HEMT with back-barrier at $L_{D}:L_{S} = 3$ compared to the DC HEMT with back-barrier at $L_{D}:L_{S} = 1$.

    • Author Affiliations

       

      RACHITA MOHAPATRA1 PRADIPTA DUTTA1

      1. School of Electronics Engineering, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar 751 024, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.