• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/093/04/0062

    • Keywords

       

      Activation energy; chemical reaction; radiative flux; Oldroyd-B nanofluid; heat generation/ absorption; stratification for heat and mass at the boundary

    • Abstract

       

      In this communication, the impact of activation energy on the nonlinear binary chemically reactive flow of an Oldroyd-B nanofluid has been examined. Buongiorno’s nanofluid model is used in mathematical modelling. The flow behaviour is discussed over a nonlinear stretchable surface with variable thickness. Nonlinear mixed convection is considered. The energy equation is modelled subject to a heat source/sink and radiative flux. Furthermore, double stratification at the boundary of the sheet is considered for the heat and mass transfers. Important slip mechanisms such as Brownian and thermophoresis diffusions are accounted. The obtained flow expressions are analytically solved by using the optimal homotopy asymptotic method (OHAM). Computational analysis for concentration, temperature and velocity is obtained and discussed using plots. Nusselt and Sherwood numbers are discussed using a tabulated form. Total squared residual error is calculated for velocity, temperature andconcentration. The obtained results show that for increased values of Hartmann (magnetic parameter) and Deborah numbers, the fluid velocity decreases. The temperature field shows an increasing impact in the presence of larger radiative parameters. Sherwood and Nusselt numbers increase with higher values of thermophoresis and solutal stratified parameters.

    • Author Affiliations

       

      M IJAZ KHAN1 SUMAIRA QAYYUM1 SHAHID FAROOQ1 T HAYAT1 2 A ALSAEDI2

      1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
      2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.