Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/092/02/0017
Nanoliquids possess remarkable features that have fascinated numerous researchers because of their utilisation in nanoscience and nanotechnology. A mathematical relation for the two-dimensional flow of Maxwell nanoliquid over a stretching cylinder is established. Buongiorno’s relation is considered here to visualise the impact of Brownian moment and thermophoresis mechanisms on Maxwell liquid. The convective heat transport is deliberated for heat transfer mechanisms. Transformation procedure yields nonlinear differential system which is then computed through the homotopic approach. The results obtained are studied in detail in relation to somatic parameters. It is notable that the velocity of Maxwell liquid shows conflicting behaviour for curvature parameter $\alpha$ and Deborah number $\beta$. Moreover, the liquid temperature increases for increased values of Brownian motion $N_{b}$ and thermophoresis parameter $N_{t}$ . Additionally, the authentication of numerical consequences is prepared via benchmarking with formerly identified restrictive circumstances and we initiate a splendid communication with these results.
Volume 96, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.