• Periodic solution of the cubic nonlinear Klein–Gordon equation and the stability criteria via the He-multiple-scales method

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Multiple scales; homotopy perturbation method; cubic nonlinear Klein–Gordon equation; cubic– quintic nonlinear Schrödinger equation; nonlinear Landau equation; stability analysis

    • Abstract


      The current work demonstrated a new technique to improve the accuracy and computational efficiency of the nonlinear partial differential equation based on the homotopy perturbation method (HPM). In this proposal, two different homotopy perturbation expansions, the outer expansion and the inner one, are introduced based on two different homotopy parameters. The multiple-scale homotopy technique (He-multiple-scalas method) is applied as an outer perturbation for the nonlinear Klein–Gordon equation.A highly accurate periodic temporal solution has been derived from three orders of perturbation. The amplitude equation, which is imposed as a uniform condition, is of the fourth-order cubic–quintic nonlinear Schrödinger equation. The standard HPM with another homotopy parameter has been used as an inner perturbation to obtain a spatial solution of the nonlinear Schrödinger equation. The cubic– quintic Landau equation is obtained in the inner perturbation technique. Finally, the approximate solution is derived from the temporal and spatial solutions. Further, two different tools are used to obtain the same stability conditions. One of them is a new tool based on the HPM, by constructing the nonlinear frequency. The method adopted here is important and powerful for solving partial differential nonlinear oscillator systems arising in nonlinear science and engineering.

    • Author Affiliations



      1. Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Heliopolis 11341, Egypt
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.