• Shape, size and phonon scattering effect on the thermal conductivity of nanostructures

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/091/06/0087

    • Keywords

       

      Nanomaterials; shape factor; size effect; roughness parameter; thermal conductivity

    • Abstract

       

      A phenomological model is described here to study the effect of size, shape and phonon scattering on the thermal conductivity of nanostructures. Using the classical model proposed by Guisbiers et al (Phys. Chem. Chem. Phys. 12, 7203 (2010), J. Phys. Chem. C 112, 4097 (2008)) in terms of the melting temperature of nanostructures, the expression for variation of thermal conductivity is obtained in terms of shape and size parameter. An additional term is included in the expression of thermal conductivity to consider the impact of phonon scattering due to the surface roughness with a decrease in size. The expression of thermal conductivity is obtained for spherical nanosolids, nanowires and nanofilms. The thermal conductivity is found to decrease in nanostructures in comparison with the counterpart bulk material. The values of thermal conductivity obtained from the present model are found to be close to the available experimental data for different values of roughness parameter which verifies the suitability of the model.

    • Author Affiliations

       

      M GOYAL1

      1. Department of Physics, GLA University, Mathura 281 406, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.