• $N_2$ adsorption on the inside and outside the single-walled carbon nanotubes by density functional theory study

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/090/01/0004

    • Keywords

       

      Single-walled carbon nanotubes; nitrogen-doped single-walled carbon nanotubes; adsorption energy; density functional theory; $N_2$ adsorption; density of states

    • Abstract

       

      The adsorption energies, bond order, atomic charge, optical properties, and electrostatic potential of nitrogen molecules of armchair single-walled carbon nanotubes (SWCNTs) and nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) were investigated using density functional theory (DFT). Our results show that adsorption of the $N_2$ molecules on the external wall of a nanotube is more effective than on the internal wall in SWCNTs. The results show that $N_2$ molecule(s) are weakly bonded to SWCNTs and N-SWCNTs through van der Waals-type interactions. The interaction of $N_2$ molecules with SWCNTs and N-SWCNTs is physisorption as the adsorption energy and charge transfer are small, and adsorption distance is large. The electronic transitions from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) (H → L) have the maximum wavelength and the lowest oscillator strength. The potential sensor on the surface of pristine SWCNTs and N-SWCNTs for the adsorption of $N_2$ molecule(s) is investigated. The N-loaded single-walled carbon nanotube is introduced as a better $N_2$ molecule(s) detector when compared with SWCNTs.

    • Author Affiliations

       

      FAHIMEH SHOJAIE1

      1. Department of Photonics, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, P.O. Box 76315-117, Kerman, Iran
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.