• Recent observational constraints on generalized Chaplygin gas in UDME scenario

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Observational cosmology; dark energy; accelerating Universe

    • Abstract


      Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matterenergy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter ($H_{0}t_{0}$) and (ii) the observed Hubble (H(z) − z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwavebackground (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters $H_{0}, A_{s}$ and $\alpha$ ($A_{s}$ and $\alpha$ are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD+BAO+CMB+Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe ($t_0$) and the present Hubble parameter ($H_0$) have been estimated with 1σ confidence level. Best-fit values of deceleration parameter (q), squared sound speed ($c^{2}_{s}$ ) and EoS parameter ($\omega$) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.

    • Author Affiliations


      P THAKUR1

      1. Physics Department, Alipurduar College, Alipurduar 736 122, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.