• On the JWKB solution of the uniformly lengthening pendulum via change of independent variable in the Bessel’s equation

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Jeffreys–Wentzel–Kramers–Brillouin; Wentzel–Kramers–Brillouin; semiclassical approximation; linear differential equations; initial value problems; the lengthening pendulum.

    • Abstract


      Common recipe for the lengthening pendulum (LP) involves some change of variables to give a relationship with the Bessel’s equation. In this work, conventional semiclassical JWKB solution (named after Jeffreys, Wentzel, Kramers and Brillouin) of the LP is being obtained by first transforming the related Bessel’s equation into the normal form ‘via the suggested change of independent variable’. JWKB approximation of the first-order Bessel functions $(ν = 1)$ of both types along with their zeros are being obtained analytically with a very good accuracy as a result of the appropriately chosen associated initial values and they are extended to the neighbouring orders $(ν = 0$ and $2)$ by the recursion relations. The required initial values are also being studied anda quantization rule regarding the experimental LP parameters is being determined. Although common numerical methods given in the literature require adiabatic LP systems where the lengthening rate is slow, JWKB solution presented here can safely be used for higher lengthening rates and a criterion for its validity is determined by the JWKB applicability criterion given in the literature. As a result, the semiclassical JWKB method which is normallyused for the quantum mechanical and optical waveguide systems is applied to the classical LP system successfully.

    • Author Affiliations



      1. Faculty of Engineering, Department of Electrical and Electronics Engineering, Adnan Menderes University, Aytepe Central Campus-09100 Aydın, Turkey
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.