• Transverse momentum spectra of the produced hadrons at SPS energy and a random walk model

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Relativistic heavy-ion collisions; transverse momentum distribution.

    • Abstract


      The transverse momentum spectra of the produced hadrons have been compared to a model, which is based on the assumption that a nucleus–nucleus collision is a superposition of isotropically decaying thermal sources at a given freeze-out temperature. The freeze-out temperature in nucleus–nucleus collisions is fixed from the inverse slope of the transverse momentum spectra of hadrons in nucleon–nucleon collision. The successive collisions in the nuclear reaction lead to gain in transverse momentum, as the nucleons propagate in the nucleus following a random walk pattern. The average transverse rapidity shift per collision is determined from the nucleon–nucleus collision data. Using this information, we obtain parameter-free result for the transverse momentum distribution of produced hadrons in nucleus–nucleus collisions. It is observed that such a model is able to explain the transverse mass spectra of the produced pions at SPS energies. However, it fails to satisfactorily explain the transverse mass spectra of kaons and protons. This indicates the presence of collective effect which cannot be accounted for, by the initial state collision broadening of transverse momentum of produced hadrons, the basis of random walk model.

    • Author Affiliations


      Bedangadas Mohanty1

      1. School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.