• Three-dimensional simulation studies of 10 MeV, 352.2 MHz drift tube Linac

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Drift tube Linac; electromagnetic simulations; resonant coupling; field stabilization.

    • Abstract


      It is proposed to build a drift tube Linac (DTL) at Raja Ramanna Centre for Advanced Technology, Indore, India, that will form a part of the future Spallation Neutron Source. This DTL will accelerate 30 mA H-ion beam from 3 MeV to 10 MeV. The DTL is designed to operate at 352.2 MHz with a maximum duty cycle of $3$%. The DTL tank will consist of three sections, each about 1.2 m in length having 60 cells. The DTL has a ramped accelerating field, which is ramped in the first section of DTL from 1.8 to 2.2 MV/m and remains constant over the rest of the length of DTL. The field in DTL will be stabilized using post-couplers. The three-dimensional (3D) design of the DTL is done using CST microwave studio (CST MWS) incorporating the various nonaxisymmetric components such as tuners, post-couplers and vacuum ports. The frequency shifts due to these components have been evaluated. This paper presents the details of the studies and analysis of 3D simulations of post-couplers, tuners and vacuum ports.

    • Author Affiliations

    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.