• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/076/04/0629-0637

    • Keywords

       

      Chalcogenide glasses; DC conductivity; Meyer–Neldel rule.

    • Abstract

       

      Meyer–Neldel (MN) formula for DC conductivity ($\sigma_{\text{DC}}$) of chalcogenide glasses is obtained using extended pair model and random free energy barriers. The integral equations for DC hopping conductivity and external conductance are solved by iterative procedure. It is found that MN energy ($\Delta E_{\text{MN}}$) originates from temperature-induced configurational and electronic disorders. Single polaron-correlated barrier hopping model is used to calculate $\sigma_{\text{DC}}$ and the experimental data of Se, As2S3, As2Se3 and As2Te3 are explained. The variation of attempt frequency $\upsilon_0$ and $\Delta E_{\text{MN}}$ with parameter $(r/a)$, where 𝑟 is the intersite separation and 𝑎 is the radius of localized states, is also studied. It is found that $\upsilon_0$ and $\Delta E_{\text{MN}}$ decrease with increase of $(r/a)$, and $\Delta E_{\text{MN}}$ may not be present for low density of defects.

    • Author Affiliations

       

      S PraKash1 Kulbir Kaur1 Navdeep Goyal1 S K Tripathi1

      1. Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160 014, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.