• Quantum information paradox: Real or fictitious?

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Quantum information paradox; black hole; eternally collapsing object.

    • Abstract


      One of the outstanding puzzles of theoretical physics is whether quantum information indeed gets lost in the case of black hole (BH) evaporation or accretion. Let us recall that quantum mechanics (QM) demands an upper limit on the acceleration of a test particle. On the other hand, it is pointed out here that, if a Schwarzschild BH exists, the acceleration of the test particle would blow up at the event horizon in violation of QM. Thus the concept of an exact BH is in contradiction with QM and quantum gravity (QG). It is also reminded that the mass of a BH actually appears as an integration constant of Einstein equations. And it has been shown that the value of this integration constant is actually zero! Thus even classically, there cannot be finite mass BHs though zero mass BH is allowed. It has been further shown that during continued gravitational collapse, radiation emanating from the contracting object gets trapped within it by the runaway gravitational field. As a consequence, the contracting body attains a quasi-static state where outward trapped radiation pressure gets balanced by inward gravitational pull and the ideal classical BH state is never formed in a finite proper time. In other words, continued gravitational collapse results in an `eternally collapsing object' which is a ball of hot plasma and which is asymptotically approaching the true BH state with $M = 0$ after radiating away its entire mass energy. And if we include QM, this contraction must halt at a radius suggested by the highest QM acceleration. In any case no event horizon (EH) is ever formed and in reality, there is no quantum information paradox.

    • Author Affiliations


      Abhas Mitra1

      1. Theoretical Astrophysics Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.