Ultrasonic investigations in intermetallics
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/072/02/0389-0398
Ultrasonic attenuation for the longitudinal and shear waves due to phonon–phonon interaction and thermoelastic mechanism have been evaluated in B2 structured in-termetallic compounds AgMg, CuZr, AuMg, AuTi, AuMn, AuZn and AuCd along $\langle 1 0 0 \rangle, \langle 1 1 1 \rangle and \langle 1 1 0 \rangle crystallographic directions at room temperature. For the same evaluations, second- and third-order elastic constants, ultrasonic velocities, Grüneisen parameters, non-linearity parameter, Debye temperature and thermal relaxation time are also computed. Although the molecular weight of these materials increases from AgMg to AuCd, the obtained results are affected with the deviation number. Attenuation of ultrasonic waves due to phonon–phonon interaction is predominant over thermoelastic loss. Results are compared with available theoretical and experimental results. The results with other well-known physical properties are useful for industrial purposes.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.