• Neutron diffraction study of quasi-one-dimensional spin-chain compounds Ca3Co$_{2−x}$Fe$_{x}$O6

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/071/05/0923-0927

    • Keywords

       

      Spin-chain oxides; neutron diffraction.

    • Abstract

       

      We report the results of the DC magnetization, neutron powder diffraction and neutron depolarization studies on the spin-chain compounds Ca3Co$_{2−x}$Fe$_{x}$O6 ($x = 0$, 0.1, 0.2 and 0.4). Rietveld refinement of neutron powder diffraction patterns at room temperature confirms the single-phase formation for all the compounds in rhombohedral structure with space group R$\bar{3}$c. Rietveld refinement also confirms that Fe was doped at the trigonal prism site, 6a (0, 0, 1/4) of Co. The high temperature magnetic susceptibility obeys the Curie–Weiss law; the value of the paramagnetic Curie temperature ($\theta_{p}$) decreases as the concentration of iron increases and it becomes negative for $x = 0.4$. No extra Bragg peak as well as no observable enhancement in the intensity of the fundamental (nuclear) Bragg peaks has been observed in the neutron diffraction patterns down to 30 K. No depolarization of neutron beam has been observed down to 3 K confirming the absence of ferro- or ferrimagnetic-like correlation.

    • Author Affiliations

       

      Anil Jain1 S M Yusuf1 Sher Singh1

      1. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.