• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/071/03/0459-0485

    • Keywords

       

      Non-stationary time series; wavelet transform; genetic programming.

    • Abstract

       

      A method based on wavelet transform is developed to characterize variations at multiple scales in non-stationary time series. We consider two different financial time series, S&P CNX Nifty closing index of the National Stock Exchange (India) and Dow Jones industrial average closing values. These time series are chosen since they are known to comprise of stochastic fluctuations as well as cyclic variations at different scales. The wavelet transform isolates cyclic variations at higher scales when random fluctuations are averaged out; this corroborates correlated behaviour observed earlier in financial time series through random matrix studies. Analysis is carried out through Haar, Daubechies-4 and continuous Morlet wavelets for studying the character of fluctuations at different scales and show that cyclic variations emerge at intermediate time scales. It is found that Daubechies family of wavelets can be effectively used to capture cyclic variations since these are local in nature. To get an insight into the occurrence of cyclic variations, we then proceed to model these wavelet coefficients using genetic programming (GP) approach and using the standard embedding technique in the reconstructed phase space. It is found that the standard methods (GP as well as artificial neural networks) fail to model these variations because of poor convergence. A novel interpolation approach is developed that overcomes this difficulty. The dynamical model equations have, primarily, linear terms with additive Padé-type terms. It is seen that the emergence of cyclic variations is due to an interplay of a few important terms in the model. Very interestingly GP model captures smooth variations as well as bursty behaviour quite nicely.

    • Author Affiliations

       

      Dilip P Ahalpara1 Amit Verma2 Jiterndra C Parikh2 Prasanta K Panigrahi2 3

      1. Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428, India
      2. Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
      3. Indian Institute of Science Education and Research, Salt Lake City, Kolkata 700 106, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.