• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Accelerator driven systems; nuclear waste transmutation; computer codes; reactor physics; reactor noise; kinetics; burnup; transport theory; Monte Carlo; thorium utilization; neutron multiplication; sub-criticality; sub-critical facilities.

    • Abstract


      In recent years, there has been an increasing worldwide interest in accelerator driven systems (ADS) due to their perceived superior safety characteristics and their potential for burning actinides and long-lived fission products. Indian interest in ADS has an additional dimension, which is related to our planned large-scale thorium utilization for future nuclear energy generation.

      The physics of ADS is quite different from that of critical reactors. As such, physics studies on ADS reactors are necessary for gaining an understanding of these systems. Development of theoretical tools and experimental facilities for studying the physics of ADS reactors constitute important aspect of the ADS development program at BARC. This includes computer codes for burnup studies based on transport theory and Monte Carlo methods, codes for studying the kinetics of ADS and sub-critical facilities driven by 14 MeV neutron generators for ADS experiments and development of sub-criticality measurement methods. The paper discusses the physics issues specific to ADS reactors and presents the status of the reactor physics program and some of the ADS concepts under study.

    • Author Affiliations


      S B Degweker1 Biplab Ghosh1 Anil Bajpal1 S D Pranjape1

      1. Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.