• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/063/04/0851-0858

    • Keywords

       

      Entropy; canonical; microcanonical; black hole

    • Abstract

       

      The thermodynamics of general relativistic systems with boundary, obeying a Hamiltonian constraint in the bulk, is determined solely by the boundary quantum dynamics, and hence by the area spectrum. Assuming, for large area of the boundary, (a) an area spectrum as determined by non-perturbative canonical quantum general relativity (NCQGR), (b) an energy spectrum that bears a power law relation to the area spectrum, (c) an area law for the leading order microcanonical entropy, leading thermal fluctuation corrections to the canonical entropy are shown to be logarithmic in area with a universal coefficient. Since the microcanonical entropy also has universal logarithmic corrections to the area law (from quantum space-time fluctuations, as found earlier) the canonical entropy then has a universal form including logarithmic corrections to the area law. This form is shown to be independent of the index appearing in assumption (b). The index, however, is crucial in ascertaining the domain of validity of our approach based on thermal equilibrium.

    • Author Affiliations

       

      Ashok Chatterjee1 Parthasarathi Majumdar1

      1. Theory Group, Saha Institute of Nuclear Physics, Kolkata - 700 064, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.