• Magnetic structure of molecular magnet Fe[Fe(CN)6]·4H2O

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/063/02/0239-0244

    • Keywords

       

      Molecular magnet; neutron diffraction; DC magnetization; ferromagnet

    • Abstract

       

      We have studied the magnetic structure of Fe[Fe(CN)6]·4H2O, prepared by precipitation method, using neutron diffraction technique. Temperature dependent DC magnetization study down to 4.2 K shows that the compound undergoes from a high temperature disordered (paramagnetic) to an ordered magnetic phase transition at 22.6 K. Rietveld analysis of neutron diffraction pattern at 60 K (in its paramagnetic phase) revealed a face centred cubic structure with space group Fm3m. The structure contains three-dimensional network of straight Fe3+-C≡N-Fe3+ chains along the edges of the unit cell cube. Fe3+ ions occupy 4a (0, 0, 0) and 4b (1/2, 1/2, 1/2) positions. Fe3+(0, 0, 0) is surrounded octahedrally by six nitrogen atoms and Fe3+ (1/2, 1/2, 1/2) is surrounded octahedrally by six carbon atoms. Magnetic Rietveld refinement of neutron diffraction data at 11 K shows a ferromagnetic coupling between the two inequivalent Fe3+ sites. Refinement yielded an ordered moment of 4.4(6) and 0.8(6) μB per Fe ion located at (0, 0, 0) and (1/2, 1/2, 1/2), respectively. Ordered moments are found to align along the face diagonal. The observed net moment from low temperature neutron diffraction study is consistent with DC magnetization results.

    • Author Affiliations

       

      Amit Kumar1 S M Yusuf1

      1. Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.