• Novel charge density wave transition in crystals of R5Ir4Si10

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/058/05-06/0827-0837

    • Keywords

       

      Charge density waves; superconductivity; magnetism

    • Abstract

       

      We review the observation of novel charge density wave (CDW) transitions in ternary R5Ir4Si10 compounds. A high quality single crystal of Lu5Ir4Si10 shows the formation of a commensurate CDW along c-axis below 80 K in the (h, 0, l) plane that coexists with BCS type superconductivity below 3.9 K. However, in a single crystal of Er5Ir4Si10, one observes the development of a 1D-incommensurate CDW at 155 K, which then locks into a purely commensurate state below 55 K. The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity anomalies in these compounds makes this CDW transition an interesting one.

    • Author Affiliations

       

      S Ramakrishnan1

      1. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai - 400 005, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.