Novel charge density wave transition in crystals of R5Ir4Si10
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/058/05-06/0827-0837
We review the observation of novel charge density wave (CDW) transitions in ternary R5Ir4Si10 compounds. A high quality single crystal of Lu5Ir4Si10 shows the formation of a commensurate CDW along c-axis below 80 K in the (h, 0, l) plane that coexists with BCS type superconductivity below 3.9 K. However, in a single crystal of Er5Ir4Si10, one observes the development of a 1D-incommensurate CDW at 155 K, which then locks into a purely commensurate state below 55 K. The well-localized Er3 moments are antiferromagnetically ordered below 2.8 K which results in the coexistence of strongly coupled CDW with local moment antiferromagnetism in Er5Ir4Si10. Unlike conventional CDW systems, extremely sharp transition (width ∼ 1.5 K) in all bulk properties along with huge heat capacity anomalies in these compounds makes this CDW transition an interesting one.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.