• Role of mesoscopic morphology in charge transport of doped polyaniline

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/058/02/0233-0239

    • Keywords

       

      Resistivity; magnetoresistance; molecular recognition; morphology

    • Abstract

       

      In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent, Molecular recognition plays a significant role in chain conformation and charge delocalization. The resistivity of PANI doped by camphor sulfonic acid (CSA)/2-acrylo-amido-1-propane sulfonic acid (AMPSA)/dodecyl benzene sulfonic acid (DBSA) is around 0.02 Ω cm. PANI-CSA and PANI-AMPSA show a metallic positive temperature coefficient of resistivity above 150 K. with a finite value of conductivity at 1.4 K; whereas, PANI-DBSA shows hopping transport at low temperatures. The magnetoresistance is positive (negative) for PANI-CSA (PANI-AMPSA); and PANI-DBSA has a large positive MR. The behavior of MR suggests subtle variations in mesoscopic morphology between PANI-CSA and PANI-AMPSA.

    • Author Affiliations

       

      A K Mukherjee1 Reghu Menon1

      1. Department of Physics, Indian Institute of Science, Bangalore - 560 012, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.