• Searching for gravitational waves from rotating neutron stars

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Gravitational waves; data analysis; neutron stars

    • Abstract


      Rotating neutron stars are one of the important sources of gravitational waves (GW) for the ground based as well as space based detectors. Since the waves are emitted continuously, the source is termed as a continuous gravitational wave (CGW) source. The expected weakness of the signal requires long integration times (∼year). The data analysis problem involves tracking the phase coherently over such large integration times, which makes it the most computationally intensive problem among all GW sources envisaged. In this article, the general problem of data analysis is discussed, and more so, in the context of searching for CGW sources orbiting another companion object. The problem is important because there are several pulsars, which could be deemed to be CGW sources orbiting another companion star. Differential geometric techniques for data analysis are described and used to obtain computational costs. These results are applied to known systems to assess whether such systems are detectable with current (or near future) computing resources.

    • Author Affiliations


      S V Dhurandhar1

      1. Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune - 411 007, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.