• Secondary ion mass spectrometry for quantitative surface and in-depth analysis of materials

    • Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/050/06/0617-0640

    • Keywords

       

      Sputtering; secondary ion emission; compositional profile; thin films

    • Abstract

       

      Secondary ion mass spectrometry (SIMS) is a technique based on the sputtering of material surfaces under primary ion bombardment. A fraction of the sputtered ions which largely originate from the top one or two atomic layers of the solid is extracted and passed into a mass spectrometer where they are separated according to their mass-to-charge ratios and subsequently detected. Because the sputter-yields of the individual species, coupled with their ionization probabilities, can be quite high and the mass spectrometers can be built with high efficiencies, the SIMS technique can provide an extremely high degree of surface sensitivity. Using a particular mode like static SIMS where a primary ion current is as low as 10−11 amp, the erosion rate of the surface can be kept as low as 1 Å per hour and one can obtain the chemical information of the uppermost atomic layer of the target. The other mode like dynamic SIMS where the primary ion current is much higher can be employed for depth profiling of any chemical species within the target matrix, providing a very sensitive tool (∼ 1 ppm down to ppb) for quantitative characterization of surfaces, thin films, superlattices, etc.

      The presence of molecular ions amongst the sputtered species makes this method particularly valuable in the study of molecular surfaces and molecular adsorbates. The range of peak-intensities in a typical SIMS spectrum spans about seven to eight orders of magnitude, showing its enormously high dynamic range; an advantage in addition to high sensitivity and high depth-resolution. Furthermore, the high sensitivity of SIMS to a very small amount of material implies that this technique is adaptable to microscopy, offering its imaging possibilities. By using this possibility in static SIMS or dynamic SIMS mode of analysis, one can obtain a two-dimensional (2D) surface mapping or a three-dimensional (3D) reconstruction of the elemental distribution, respectively within the target matrix.

      Secondary ion yields for elements can differ from matrix to matrix. These sensitivity variations pose serious limitations in quantifying SIMS data. Various methods like calibration curve approach, implantation standard method, use of relative sensitivity factor, etc. are presently employed for making quantitative SIMS analysis. The formation of secondary ions by ion bombardment of solids is relatively a complex process and theoretical research in this direction continues in understanding this process in general.

      The present paper briefly reviews the perspective of this subject in the field of materials analysis.

    • Author Affiliations

       

      P Chakraborty1

      1. Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhan Nagar, Calcutta - 700 064, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.