The algebra and geometry ofSU(3) matrices
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/049/04/0371-0383
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular groupSU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in anSU(3) covariant manner. Thef andd symbols ofSU(3) lead to two ways of ‘multiplying’ two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization ofSU(3) is developed as a generalization of that forSU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
K S Mallesh1 N Mukunda1 2 3
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.