• Fulltext

       

        Click here to view fulltext PDF


      Permanent link:
      https://www.ias.ac.in/article/fulltext/pram/046/06/0431-0449

    • Keywords

       

      Positron; hydrocarbons; static potential; polarization potential; absorption potential; inelastic and total cross sections; Bethe plot; independent atom model; additivity rule

    • Abstract

       

      The total cross sections for positron impact on hydrocarbons have been calculated using the additivity rule in which the total cross section for a molecule is the sum of the total cross section for the constituent atoms. The energy range considered is from a few eV to several thousand eV. The total cross sections for positron impact on an atom are calculated by employing a complex spherical potential which comprises of a static, polarization and an absorption potential. We have good agreement with the experimental results for hydrocarbons for positron energy ⩾100 eV. Our results also agree with the available calculations for CH4 and C2H2 which employed full molecular wavefunctions beyond 100 eV. Our absorption cross sections also agree with molecular wave-function calculations for C2H2 and CH4 beyond 100 eV. We have shown the Bethe plots fore+−C ande+−H scattering systems and Bethe parameters have been extracted. We have fitted the cross section for positron impact on hydrocarbons in the formσt(CnHm)=naEb+mcEd in the energy range 300–5000 eV wherea=195.0543,b=0.7986,c=371.1757 andd=1.1379 withE in eV andσt in 10−16 cm2.

    • Author Affiliations

       

      Ritu Raizada1 K L Baluja1

      1. Department of Physics and Astrophysics, University of Delhi, Delhi - 110 007, India
    • Dates

       
  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.