Bound state solutions of the two-electron Dirac-Coulomb equation
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/038/01/0051-0075
We present a variational method for solving the two-electron Dirac-Coulomb equation. When the expectation value of the Dirac-Coulomb Hamiltonian is made stationary for all possible variations of the different components of a well-behaved trial function one obtains solutions representative of the physical bound state wave functions. The ground state wave function is derived from the application of a minimax principle. Since the trial function remains well-behaved, the method remains safe from the twin demons of variational collapse and continuum dissolution.
The ground state wave function thus derived can be interpreted as a linear combination of different configurations. In particular, the admixing of intermediate states having one (two) electron(s) deexcited to a negative-energy orbital (orbitals) contributes a second-order level shiftE0−(2) which can be identified with the second-order shift due to the Pauli blocking of the production of one (or two) virtual electron-positron pair(s). Thus the minimax solution corresponds to the renormalized ground state in quantum electrodynamics, with deexcitations to negative-energy orbitals taking the place of the avoidance of virtual pairs.
If one extends the relativistic configuration interaction (RCI) treatment by additionally including negative-energy and mixed-energyeigenvectors of the Dirac-Hartree-Fock hamiltonian matrix in the two-electron basis, the calculated energy will be shifted from the conventional RCI value by an amount that is much smaller thanE0−(2). For two-electron atoms, we have derived expressions for the all-spinor limit (δE) and thes-spinor limit (δEs) of this shift in leading orders. The all-spinor limit (δE) is of orderα4Z4 1/3 whereas thes-spinor limit (δEs) is of orderα4Z3 2/3. leading components are related to the 1-pair component ofE0−(2) in a simple way, and the relationships offer the possibility of computing energy due to virtual pairs. Numerical results are discussed.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.