• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Multifractal; signularity spectrum; self-similar wave functions; quasicrystal; Fibonacci chain

    • Abstract


      Using multifractal analysis we study extended, self-similar and non-self-similar type of wave functions in the Fibonacci model. Extended states arising due to commutation of transfer matrices for certain blocks of atoms in quasiperiodic systems are shown to have the same signature as the Bloch states in terms of the singularity spectrum withf(α)=α=1. Numerically, however, the extended states show a typical multifractal behaviour for finite chain lengths. Finite size scaling corrections yield results consistent with that obtained analytically. The self-similar states at the band edges show a multifractal behaviour and they are energy dependent in the case of blocks of atoms arranged in a Fibonacci sequence. For non-self-similar states we obtain a non-monotonic behaviour off(α) as a function of the chain length. We also show that in cases where extended states exist, the cross-over from extended to non-self-similar states in gradual.

    • Author Affiliations


      G Ananthakrishna1 2 Vijay Kumar1

      1. Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India
      2. Materials Research Centre, Indian Institute of Science, Bangalore - 560 012, India
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.