Magnetic properties and peculiarity of magnetic states in dilute antiferromagnets Mn1−xZnxF2
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pram/028/05/0602-0602
The dependence of magnetic moment and susceptibility on temperature, magnetic field and frequency of some single crystals Mn1−xZnxF2 (x≈xe=0.75—percolation limit) were experimentally investigated. Our experiments show that (Bazhan and Petrov 1984; Cowleyet al 1984; Villain 1984) in these crystals the nonequilibrium magnetic state of spinglass type with finite correlation length appears as temperature decreasesT<T in weak magnetic fields. This state is determined by fluctuation magnetic moments √nμ (wheren is the number of magnetic ions, corresponding to finite correlation length andμ the magnetic moment Mn+1).
In the experiments in low magnetic fields and frequencies there are no peculiarities in the magnetic susceptibility temperature dependence atT≠Tf. At temperaturesT>Tf andT<Tf magnetic susceptibility is determined by$$\chi \left( {T > T_f } \right) = \frac{{N\left\langle \mu \right\rangle ^2 }}{{3k\left( {T + \theta } \right)}} = \frac{N}{n}\frac{{\left\langle {\sqrt n \mu } \right\rangle ^2 }}{{3k\left( {T + \theta } \right)}} = \chi \left( {T< T_f } \right)$$. In strong magnetic fields and large frequencies there are peculiarities in thex(T) dependence atT=Tf. AtT<Tf and strong magnetic fieldsX(T)=x0 andT<Tf and at large frequenciesx(T)=x0+α/T.
The dependences of magnetic susceptibility on the frequency are determined by the magnetic system relaxation. Calculations and comparison with experiments show that the relaxation of the investigated magnetic systems atT<Tf follows the relaxation lawM(t)=M(0) exp[−(t/τ)r], suggested in Palmeret al (1984) for spin-glasses relaxation taking into account the time relaxation distributionτ0....τmax in the system and its ‘hierarchically’ dynamics.
Volume 97, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.