• Prediction for Z-mass is a crucial test of the standard model

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Standard model; direct product group; simple group; Higgs-independent case; Higgs-dependent case; reducibility; Z-mass

    • Abstract


      In schemes with oneW boson and twoZ-bosons (mediating the charged and neutral current interactions involving ordinary fermions) based on the direct product and simple groups, SU(2) × U(1) ×u′(1) andG × U(1) (G is a simple group of rank two), the following two questions are discussed. (1) What are the necessary and sufficient conditions for minimal reducibility of the effective four-fermion neutral current interaction (involving νμ-hadron, electron-hadron and νμ-electron sectors) to the corresponding prediction of the standard model? (2) In what way are the masses of the twoZ-bosons constrained relative to the mass of the neutral boson of standard model? The answers to these questions are given first by keeping the underlying Higgs structure, responsible for gauge-boson (and fermion) mass generation, completely arbitrary (called Higgs-independent case) and then by making a specific choice for the Higgs structure resulting in a natural mass relation for theW andZ-bosons that is an exact counterpart toMW(S)/2=MZ(S)/2 sec2ϑW for the standard model (called Higgs-dependent case). The distinction between these two cases is brought out clearly as also that between the direct product and simple groups. Whether or not any assumption is made about the Higgs structure, with either the direct product or the simple group, it is concluded that in general there is aZ-boson lighter than the neutral boson of the standard model.

    • Author Affiliations


      S K Soni1

      1. Tata Institute of Fundamental Research, Bombay - 400 005
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.