• Analysis of fission excitation functions and the determination of shell effects at the saddle point

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Fission excitation function; 212Po; shell effects at saddle point

    • Abstract


      A method is proposed to deduce the shell correction energy corresponding to the fission transition state shape of nuclei in the mass region around 200, from an analysis of the first chance fission values of the ratio of fission to neutron widths, (Γfn)1. The method is applied to the typical case of the fissioning nucleus212Po, formed by alpha bombardment of208Pb. For the calculation of the neutron width, the level densities of the daughter nucleus after neutron emission were obtained from a numerical calculation starting from shell model single particle energy level scheme. It is shown that with the use of standard Fermi gas expression for the level densities of the fission transition state nucleus in the calculation of the fission width, an apparent energy dependence of the fission barrier height is required to fit the experimental data. This energy dependence, which arises from the excitation energy dependence of shell effects on level densities, can be used to deduce the shell correction energy at the fission transition state point. It is found that in the case of212Po, the energy of the actual transition state point is higher than the energy of the liquid drop model (LDM) saddle point by (3 ± 1) MeV, implying significant positive shell correction energy at the fission transition state. Further, the liquid drop model value of level density parametera is found to be a few per cent smaller for the saddle point shape as compared to its spherical shape.

    • Author Affiliations


      V S Ramamurthy1 S S Kapoor1

      1. Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay - 400 085
    • Dates

  • Pramana – Journal of Physics | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.