Numerical radius inequalities for tensor product of operators
PINTU BHUNIA KALLOL PAUL ANIRBAN SEN
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/133/0003
The two well-known numerical radius inequalities for the tensor product $A \bigotimes B$ acting on $\mathbb{H} \bigotimes \mathbb{K}$, where $A$ and $B$ are bounded linear operators defined on complex Hilbert spaces $\mathbb{H}$ and $\mathbb{K}$, respectively are ${\frac{1}{2}}\mid\mid A\mid\mid\,\mid\mid B\mid\mid\leq w(A\bigotimes B)\leq \mid\mid A\mid\mid\,\mid\mid B\mid\mid$ and $w(A)w(B) \leq w(A \bigotimes B) \leq {\rm min}\{ w(A)\mid\mid B\mid\mid,\,w(B)\mid\mid A\mid\mid\}$. In this article, we develop new lower and upper bounds for the numerical radius $w(A \bigotimes B)$ of the tensor product$A \bigotimes B$ and study the equality conditions for those bounds.
PINTU BHUNIA1 KALLOL PAUL1 ANIRBAN SEN1
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.