• Relative grade and relative Gorenstein dimension with respect to a semidualizing module

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Semidualizing module; grade of module; perfect module; $G$-perfect.

    • Abstract


      Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing $R$-module. For $R$-modules $M$ and $N$, the notions ${\rm grade}_{\mathcal{P}_C}(M, N)$ and ${\rm grade}_{\mathcal{I}_C}(M, N)$are introduced as the relative setting of the notion ${\rm grade}(M, N)$ with respect to $C$. Some results about ${\rm grade}_{\mathcal{P}_C}(M, N)$, ${\rm grade}_{\mathcal{I}_C}(M, N)$ and ${\rm grade}(M, N)$ are mentioned. Forfinitely generated $R$-modules $M$ and $N$, we show that ${\rm grade}_{\mathcal{P}_C}(M, N)= {\rm grade}(M, N)$ (${\rm grade}_{\mathcal{I}_C}(M, N) = {\rm grade}(M, N)$), provided we have some special conditions. Also, thenotions of $C$-perfect and $G_C$-perfect $R$-modules are introduced as the relative setting of the notions of perfect and $G$-perfect $R$-modules with respect to $C$, and it is proven that several results for these new concepts are similar to the classical results. Finally, some results about relative grade of tensor and Hom functors with respect to $C$ are given.

    • Author Affiliations



      1. Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.