Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/130/0066
Graham Higman introduced the concept of januarial as a specific map having two equal sized faces under the action of $\langle x, y : x^2 = y^k = (xy)^l = 1\rangle$ on a finite set. In this paper we take up the question posed by Graham Higman that what is the maximum number of circuits in the subgraph of a simple januarial for any value of $k$? We describe conditions under which januarials are connected and larger januarials are obtained. In an effort to look at topological features of the connected januarial, we find out genus of the januarial, genera of the two faces and number of circuits.
Volume 130, 2020
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.