• Rigidity of Bott–Samelson–Demazure–Hansen variety for $F_{4}$ and $G_{2}$

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Bott–Samelson–Demazure–Hansen variety; coexeter element; tangent bundle

    • Abstract


      Let $G$ be a simple algebraic group of adjoint type over $\mathbb{C}$, whose root system is of type $F_{4}$. Let $T$ be a maximal torus of $G$ and $B$ be a Borel subgroup of $G$ containing $T$. Let $w$ be an element of the Weyl group $W$ and $X(w)$ be the Schubert variety in the flag variety $G/B$ corresponding to $w$. Let $Z(w, \underline{i})$ be the Bott–Samelson–Demazure–Hansen variety (the desingularization of $X(w)$) corresponding to a reduced expression $\underline{i}$ of $w$. In this article, we study the cohomology modules of the tangent bundle on $Z(w_{0}, \underline{i})$, where $w_{0}$ is the longest element of the Weyl group $W$. We describe all the reduced expressions of $w_{0}$ in terms of a Coxeter element such that $Z(w_{0}, \underline{i})$ is rigid (see Theorem 7.1). Further, if $G$ is of type $G_{2}$, there is no reduced expression $\underline{i}$ of $w_{0}$ for which $Z(w_{0}, \underline{i})$ is rigid (see Theorem 8.2).

    • Author Affiliations



      1. Chennai Mathematical Institute, Plot H1, SIPCOT IT Park, Siruseri, Kelambakkam 603 103, India
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.