• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Closed submodule; flat module; Dickson torsion theory; semiartinian module; proper class

    • Abstract


      A submodule $N$ of a module $M$ is called $\mathcal{D}$-closed if the socle of $M/N$ is zero. $\mathcal{D}$-closed submodules are similar to $\mathcal{S}$-closed submodules (a generalization of closed submodules) defined through nonsingular modules. First, we describe the smallest proper class (due to Buchsbaum) containing the class of short exact sequences determined by $\mathcal{D}$-closed submodules in terms of that submodule, and showthat it coincides with other classes of modules under certain conditions. Second, we study coprojective modules of this class, called edc-flat modules. We give some equivalent conditions for injective modules to be edc-flat for special rings, and for edc-flat modules to be projective (flat) for any ring.

    • Author Affiliations



      1. Department of Mathematics, Çukurova University, Adana, Turkey
      2. Department of Mathematics, Dokuz Eylul University, Izmir, Turkey
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.