• The convolution equation $\sigma*\mu=\mu$ on non-compact non-abelian semigroups

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Convolution equation; abelian semigroups; completely simple semigroups; weak convergence; topological semigroups

    • Abstract


      In probability theory, often in connection with problems on weak convergence, and also in other contexts, convolution equations of the form $\sigma*\mu=\mu$ come up. Many years ago, Choqet and Deny (C. R. Acad. Sci. Paris 250 (1960) 799-801) studied these equations in locally compact abelian groups. Later, Szekely and Zeng (J. Theoret. Probab. 3(2) (1990) 361-365) studied these equations in abelian semigroups. Like in [2], the results in [7] are also complete. Thus, these equations are studied here for the first time on non-compact non-abelian semigroups. Our main results are Theorems 3.1 and 3.3 in section 3. They are new results as far as we know, and also the best possible under a minor condition. All semigroups in this paper are, unless otherwise mentioned, locally compact Hausdorff second countable topological semigroups. Theorems 3.1 and 3.3 hold for these semigroups.

    • Author Affiliations



      1. University of South Florida, Tampa, FL 33620, USA
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.