• Augmentation quotients for Burnside rings of some finite $p$-groups

    • Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Finite $p$-group; Burnside ring; augmentation ideal; augmentation quotient

    • Abstract


      Let $G$ be a finite group, $\Omega(G)$ be its Burnside ring and $\Delta(G)$ the augmentation ideal of $\Omega(G)$. Denote by $\Delta^{n}(G)$ and $\mathcal{Q}_{n}(G)$ the $n$-th power of $\Delta(G)$ and the $n$-th consecutive quotient group $\Delta^{n}(G)/\Delta^{n+1}(G)$, respectively. This paper provides an explicit $\mathbb{Z}$-basis for $\Delta^{n}(\mathcal{H})$ and determine the isomorphism class of $\mathcal{Q}_{n}(\mathcal{H})$ for each positive integer $n$, where $\mathcal{H} = \langle g, h| g^{p^{m}} = h^{p} = 1, h^{−1}gh = g^{p^{m−1}+1}\rangle$, $p$ is an odd prime

    • Author Affiliations



      1. School of Mathematics, Hefei University of Technology, Hefei 230009, China
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.