Zeros and uniqueness of 𝑄-difference polynomials of meromorphic functions with zero order
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/124/04/0533-0549
In this paper, we investigate the value distribution of 𝑞-difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials $[f^{n}(z)f (qz + c)]^{(k)}$ and $[f^{n}(z)(f (qz + c) - f (z))]^{(k)}$, where $f(z)$ is a transcendental function of zero order. The uniqueness problem of difference-differential polynomials is also considered.
Volume 132, 2022
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.