Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/124/04/0527-0531
In this paper, the authors find the best numbers 𝛼 and 𝛽 such that $\overline{C}(\alpha a+ (1 - \alpha)b$, $\alpha b + (1 - \alpha)a) \lt T (a, b) \lt \overline{C} (\beta a + (1 - \beta)b, \beta b + (1 - \beta)a)$ for all 𝑎, $b \gt 0$ with $a \neq b$, where $\overline{C}(a, b) = \frac{2(a^{2}+ab+b^{2})}{3(a+b)}$ and $T(a, b) = \frac{2}{\pi} \int^{\pi/2}_{0}\sqrt{a^{2}\cos^{2}\theta + b^{2}\sin^{2} \theta} {\rm d}\theta$ denote respectively the centroidal mean and Toader mean of two positive numbers 𝑎 and 𝑏.
Current Issue
Volume 129 | Issue 5
November 2019
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.