• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Multipermutohedron; Alexander dual; Hilbert series; parking functions.

    • Abstract


      An Alexander dual of a multipermutohedron ideal has many combinatorial properties. The standard monomials of an Artinian quotient of such a dual correspond bijectively to some 𝜆-parking functions, and many interesting properties of these Artinian quotients are obtained by Postnikov and Shapiro (Trans. Am. Math. Soc. 356 (2004) 3109–3142). Using the multigraded Hilbert series of an Artinian quotient of an Alexander dual of multipermutohedron ideals, we obtained a simple proof of Steck determinant formula for enumeration of 𝜆-parking functions. A combinatorial formula for all the multigraded Betti numbers of an Alexander dual of multipermutohedron ideals are also obtained.

    • Author Affiliations


      Ajay Kumar1 Chanchal Kumar1

      1. Indian Institute of Science Education and ResearchMohali, Knowledge City, Sector 81, SAS Nagar 140 306, India
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.