• Fulltext


        Click here to view fulltext PDF

      Permanent link:

    • Keywords


      Quadratic residues; primitive roots; finite fields.

    • Abstract


      Given an integer $N\geq 3$, we shall prove that for all primes $p\geq(N-2)^2 4^N$, there exists 𝑥 in $(\mathbb{Z}/p\mathbb{Z})^∗$ such that $x,x+1,\ldots,x+N-1$ are all squares (respectively, non-squares) modulo 𝑝. Similarly, for an integer $N\geq 2$, we prove that for all primes $p\geq \exp(2^{5.54N})$, there exists an element $x\in(\mathbb{Z}/p\mathbb{Z})^∗$ such that $x,x+1,\ldots,x+N-1$ are all generators of $(\mathbb{Z}/p\mathbb{Z})^∗$.

    • Author Affiliations


      Jagmohan Tanti1 R Thangadurai2

      1. Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Brambe, Ranchi 835 205, India
      2. 2Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India
    • Dates

  • Proceedings – Mathematical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.