Remark on an Infinite Semipositone Problem with Indefinite Weight and Falling Zeros
G A Afrouzi S Shakeri N T Chung
Click here to view fulltext PDF
Permanent link:
https://www.ias.ac.in/article/fulltext/pmsc/123/01/0145-0150
In this work, we consider the positive solutions to the singular problem
\begin{equation*}\begin{cases}-\Delta u=am(x)u-f(u)-\frac{c}{u^\alpha} & \text{in}\quad\Omega,\\ u=0 & \text{on}\quad\partial\Omega,\end{cases}\end{equation*}
where $0 < \alpha < 1,a>0$ and $c>0$ are constants, 𝛺 is a bounded domain with smooth boundary $\partial\Omega,\Delta$ is a Laplacian operator, and $f:[0,\infty]\longrightarrow\mathbb{R}$ is a continuous function. The weight functions $m(x)$ satisfies $m(x)\in C(\Omega)$ and $m(x)>m_0>0$ for $x\in\Omega$ and also $\|m\|_\infty=l < \infty$. We assume that there exist $A>0, M>0,p>1$ such that $alu-M\leq f(u)\leq Au^p$ for all $u\in[0,\infty)$. We prove the existence of a positive solution via the method of sub-supersolutions when $m_0 a>\frac{2\lambda_1}{1+\alpha}$ and 𝑐 is small. Here $\lambda_1$ is the first eigenvalue of operator $-\Delta$ with Dirichlet boundary conditions.
G A Afrouzi1 S Shakeri1 N T Chung2
Volume 133, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.